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And the Oscar Goes to: The Intel® 
Embree Ray Tracing Library!
I’m serious. The Intel® Embree Ray Tracing library, a key component of the Intel® oneAPI 
Rendering Toolkit, received a Scientific and Technical Achievement Award from the Academy 
of Motion Picture Arts and Sciences (“The Oscars”):

“For the past decade, the Intel Embree Ray Tracing Library has provided a high-performance, industry-

leading, CPU-based ray-geometry intersection framework through well-engineered open source code, 

supported by a comprehensive set of research publications. It has become an indispensable resource for 

motion picture production rendering.”

In this issue, Jim Jeffers (Intel Senior Director of Advanced Rendering and Visualization) gives 
a brief overview of the Advanced Ray Tracing APIs Proposed for the oneAPI Specification. 
We also announce the winners of The Great Cross-Architecture Challenge, a oneAPI coding 
contest sponsored by Intel in collaboration with the European Organization for Nuclear 
Research (CERN) and Argonne National Laboratory.

With the oneAPI industry initiative building on its momentum from the past year, this issue 
contains several articles on developing and tuning oneAPI code. Our feature discusses 
Reduction Operations in Data Parallel C++ (DPC++). It’s the first in a two-part series 
on optimizing this common parallel pattern. I’ve been experimenting with DPC++ and 
oneMKL lately, so I decided to write an article about an algorithm that I use in my research: 
Implementing the Fourier Correlation Algorithm Using oneAPI. Our friends at the 
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Letter from the Editor
Henry A. Gabb, Senior Principal Engineer at Intel Corporation, is a longtime high-performance and 
parallel computing practitioner who has published numerous articles on parallel programming. He 
was editor/coauthor of “Developing Multithreaded Applications: A Platform Consistent Approach” 
and program manager of the Intel/Microsoft Universal Parallel Computing Research Centers.
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SENAI CIMATEC Supercomputing Center in Brazil were kind enough to contribute an article 
describing their experience using oneAPI tools to migrate a CUDA-based stencil code to 
DPC++: Using oneAPI to Speed Up the Finite-Difference Method. oneTBB Flow Graph and 
the OpenVINO Inference Engine shows you how to coordinate multiple machine learning 
models in the same pipeline using a lightweight C++ API.

Finally, we close this issue with some code modernization from the old school. Optimization 
of Scan Operations Using Explicit Vectorization illustrates the use of OpenMP directives 
and vector intrinsics to tune the computation of prefix sums.

As always, don’t forget to check out Tech.Decoded for more information on Intel solutions 
for code modernization, visual computing, data center and cloud computing, data science, 
systems and IoT development, and heterogeneous parallel programming with oneAPI.

 
Henry A. Gabb 
April 2021
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Intel announced the winners of the oneAPI Great Cross-Architecture Challenge in collaboration with the 

European Organization for Nuclear Research (CERN) and Argonne National Laboratory. The challenge 

attracted participants from 52 countries across five continents, showing the growing momentum of oneAPI’s 

cross-architecture, multi-vendor, and open approach. The entrants used oneAPI and Data Parallel C++ 

(DPC++) to create a variety of applications in domains such as bioinformatics, cryptography, data analytics, 

education, financial services, genomics, healthcare, image processing, mathematics, molecular dynamics, 

particle physics, and ray tracing.

The oneAPI Great Cross-Architecture Challenge asked professional and student software developers to 

use oneAPI to create fast, efficient, and future-ready heterogeneous applications that take full advantage 

of various XPUs including CPUs, GPUs, FPGAs, and other accelerators. Using the free access to the Intel® 

oneAPI Toolkits and the Intel® DevCloud, which provides the ability to test code and workloads across Intel® 

XPUs, participants had the option of porting an existing C/C++ or CUDA application using the Intel® DPC++ 

Compatibility Tool or creating an entirely new oneAPI application.

Winners Announced for the oneAPI 
Great Cross-Architecture Challenge
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"This challenge really showcases the ease of use and freedom of choice that oneAPI’s open, cross-

architecture programming model delivers. The participants were able to either quickly port or develop 

from scratch applications with real-world impact across a range of disciplines. We are highly impressed 

with the innovative and creative submissions received from around the world, and the positive feedback 

and growing adoption for oneAPI." 

Jeff McVeigh, vice president, Datacenter XPU Products and Solutions at Intel

"The participants in the Great Cross-Architecture Challenge demonstrated the potential of oneAPI. 

Through its use, they were able to write code for heterogeneous hardware architectures with a diverse 

range of applications. Opening the Intel® development environment leveled the playing field for this 

competition. People from across the world were able to access cutting-edge technology through this 

developer challenge. We look forward to welcoming the winners of the competition to CERN." 

Maria Girone, Chief Technology Officer, CERN openlab

The winning student submissions receiving the internship award include:

	• Rafael Campos of Portugal demonstrated oneAPI’s fast and efficient development by adapting OpenCL* 
applications using modern constructs and minimal programming effort. The result is the boosting of 
performance and power efficiency of bioinformatic applications, specifically for epistasis detection.

	• Andrew Pastrello of Australia showed the ease of porting CUDA code to DPC++ by optimizing a music 
production tool to synthesize audio from gravitational waveforms produced by binary black hole 
inspiral-merger-ringdown simulations.

Professional developers receiving the opportunity to take a special tour of CERN include:

	• Ricardo Nobre of Portugal used the Intel DPC++ Compatibility Tool to seamlessly port a CUDA-based 
application, with more than 95% of their hand-tuned code automatically migrated. The application 
features collaborative utilization of CPU and GPU devices to find new associations between genotypes 
and phenotypes.

	• Zhen Ju of China showcased the migration of a CUDA-based application and the benefits of an open 
programming model for all architectures. The ported application offered a more efficient and accurate 
solution to filter out redundant sequences in genetic data.

	• Eugenio Marinelli of France leveraged oneAPI’s complete set of cross-architecture libraries and tools 
to efficiently develop a new application for implementing scalable, heterogeneous parallel processing 
algorithms that can be used to quickly and accurately decode digital data stored in synthetic DNA.

Participants had access to additional free resources such as code samples, developer guides, webinars, and 

the Intel® DevMesh collaboration portal.
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The contest offered more than $40,000 in prizes as well as once-in-a-lifetime opportunities, like trips to 

CERN, a CERN openlab internship, and a chance to work on a project with Argonne National Laboratory. Five 

grand prize winners were selected by a panel of six esteemed judges:

	• Maria Girone, Chief Technology Officer, CERN

	• Erik Lindahl, Professor of Physics, Stockholm University

	• Simon McIntosh-Smith, Professor of High-Performance Computing, Bristol University

	• Heidi Poxon, Distinguished Technologist, Hewlett Packard Enterprise

	• Katherine Riley, Director of Science, Argonne National Laboratory

	• Michael Wong, Distinguished Engineer, Codeplay Software

Entries were evaluated based on innovation, impact on humanity, use of cross-architecture computing, 

level of coding expertise, and quality of project explanation. The top five winners were awarded one of the 

following grand prizes:

	• One of three trips to CERN for a special tour1, or $5,000 cash

	• A summer CERN openlab internship (in person or virtual), or $8,000 in cash

	• Participate in a oneAPI-related project at Argonne National Laboratory (in person or virtual), or $8,000 
in cash

In addition to the grand prizes, 20 contestants received $500 cash prizes for their quality submissions.

Since 2019, oneAPI ecosystem support has steadily grown. More than 60 leading research organizations, 

companies, and universities support the oneAPI initiative. Their success using Intel oneAPI Toolkits is noted 

in oneAPI ecosystem support and reviews site. A new oneAPI applications catalog details more than 230 

applications powered by oneAPI. The following resources are available to help developers build high-

performance, cross-architecture applications using oneAPI and the Intel oneAPI Toolkits:

	• Key Links: Documentation, oneAPI programming guide, and code samples, and free training.

	• Support: For technical support using the Intel oneAPI Toolkits, developers can access the free 
community forums. Priority Support with direct, private interactions with Intel engineers is included in 
toolkit commercial packages.

	• Training: Free training is available via webinars, deep-dive workshops, full learning paths, and more. 
For customers needing assistance accelerating HPC and AI solutions using oneAPI, a group of specially 
trained companies offer consulting through a new Intel® oneAPI Technology Partner program.

1 Contingent upon COVID-19 travel restrictions
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An Introduction to the Reduction Operation 
Reduction is a common operation in parallel programming that reduces the elements of an array into a single 

result. Let’s say we want to add the elements of a large array into a single sum (Figure 1). Doing this operation 

in parallel requires the computation of partial sums that are sequentially combined, or reduced, to produce 

the final result. Reduction operators (e.g., summation, minimum, maximum, minimum location, and maximum 

location) are associative and are often commutative. There are many ways to implement a reduction, and its 

Ramesh Peri, Senior Principal Engineer, Intel Corporation

Implementing and Tuning the Common Reduction 
Parallel Pattern

Reduction Operations in 
Data Parallel C++



Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice. 

10The Parallel Universe

Figure 1 Pictorial representation of a summation reduction

performance depends on the underlying processor architecture. This article explores several ways to express 

reductions in Data Parallel C++ (DPC++) and discusses the performance implications of each.

Reduction in DPC++ Using Global Atomics 
In the following implementation, each work-item in the DPC++ kernel is responsible for an element of the 

input array and atomically updates a global variable:

void reductionAtomics1(sycl::queue &q,
                       sycl::buffer<int> inbuf,
                       int &res,
                       int size) {
   const size_t data_size = inbuf.get_size() / sizeof(int);
   int num_work_items = data_size;
   sycl::buffer<int> sum_buf(&res, 1);
   q.submit([&](auto &h) {
      sycl::accessor buf_acc(inbuf, h, sycl::read_only);
      sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::noinit);

      h.parallel_for(num_work_items, [=](auto index) {
        size_t glob_id = index[0];
        auto v = sycl::ONEAPI::atomic_ref<int,
                   sycl::ONEAPI::memory_order::relaxed,
                   sycl::ONEAPI::memory_scope::device,
                   sycl::access::address_space::global_space>(sum_acc[0]);
        v.fetch_add(buf_acc[glob_id]);
      });
});

Depending on the number of threads created by the compiler (which in turn depends on the default work-

group and sub-group sizes chosen by the compiler for the target device), the contention for accessing the 

single global variable, sum_buf, will be quite high. In general, the performance of such a solution will not be 

very good.
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Reducing Contention on Global Atomics
One way to reduce the contention on the global variable update is to decrease the number of threads 

accessing this variable. This can be achieved by making each work-item process multiple elements of 

the array, perform a local reduction on a chunk of elements, and then perform the global atomic update 

(Figure 2).

This implementation is shown in the following code:

Figure 2 Each work-item computes a partial sum

void reductionAtomics2(sycl::queue &q,
                       sycl::buffer<int> inbuf,
                       int &res) {
   const size_t data_size = inbuf.get_size() / sizeof(int);
   sycl::buffer<int> sum_buf(&res, 1);
   int num_work_items =
       q.get_device().get_info<sycl::info::device::max_compute_units>();
   int BATCH = (data_size + num_work_items - 1) / num_work_items;
   q.submit([&](auto &h) {
      sycl::accessor buf_acc(inbuf, h, sycl::read_only);
      sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::noinit);

      h.parallel_for(num_processing_elements, [=](auto index) {
        size_t glob_id = index[0];
        size_t start = glob_id * BATCH;
        size_t end = (glob_id + 1) * BATCH;
        if (end > N)
          end = N;
        int sum = 0;
        for (size_t i = start; i < end; i++)
          sum += buf_acc[i];
          auto v = sycl::ONEAPI::atomic_ref<int,
                    sycl::ONEAPI::memory_order::relaxed,
                    sycl::ONEAPI::memory_scope::device,
                    sycl::access::address_space::global_space>(sum_acc[0]);
        v.fetch_add(sum);
      });
    });
}
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This implementation is not very efficient because each work-item is accessing contiguous locations in 

memory, which causes the compiler to generate inefficient code. The DPC++ compiler treats each work-item 

like a vector lane, so work-items accessing contiguous locations of memory will be inefficient.

Efficient Access of Memory by Work-Items
The DPC++ compiler maps each work-item to a vector lane of the underlying processor, which allows the 

compiler to generate efficient code when the work-items access memory locations with a stride greater than 

the vector length of the processor. This access pattern is shown in Figure 3, where each of the labels  

wi-1 … wi-n represent each of the n work-items.

The kernel where each work-item operates on multiple, interleaved elements of the input vector is shown in 

the following code:

Figure 3 Each work-item computes a partial sum from non-contiguous memory locations

void reductionAtomics3(sycl::queue &q, 
                       sycl::buffer<int> inbuf,
                       int &res) {
   const size_t data_size = inbuf.get_size() / sizeof(int);
   sycl::buffer<int> sum_buf(&res, 1);
   int num_work_items =
    q.get_device().get_info<sycl::info::device::max_compute_units>() *
    q.get_device().get_info<sycl::info::device::native_vector_width_int>();
   q.submit([&](auto &h) {
      sycl::accessor buf_acc(inbuf, h, sycl::read_only);
      sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::noinit);

      h.parallel_for(num_work_items, [=](auto index) {
        size_t glob_id = index[0];
        int sum = 0;
        for (size_t i = glob_id; i < data_size; i += num_work_items)
          sum += buf_acc[i];
          auto v = sycl::ONEAPI::atomic_ref<int,
                   sycl::ONEAPI::memory_order::relaxed,
                   sycl::ONEAPI::memory_scope::device,
                   sycl::access::address_space::global_space>(sum_acc[0]);
        v.fetch_add(sum);
      });
    });
}
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The choice of number of work-items is important. It is selected to be the product of the number of 

processing elements and the preferred vector width of the processing element. This number may be 

sufficient on some platforms, but perhaps not for others where the number of threads supported is much 

larger than the number of processing elements. Consequently, this number must be chosen carefully based 

on the target platform.

Tree Reduction
A tree reduction is a popular technique in which each of the work-items in a kernel apply the reduction 

operator to adjacent elements, producing intermediate results with multiple levels. This can be applied within 

a work-group, as shown in Figure 4, because thread scheduling and synchronization are highly efficient, with 

hardware support within a work-group.

The size of a work-group is fairly small (about 256 or 512) and is dependent on the hardware device, while 

the number of elements to be reduced is an order of magnitude larger than the work-group size. This means 

that the reduction operation performed by each work-group produces an intermediate result that needs to 

be further reduced. This can be handled in two ways:
1.	By each work-group calling a global atomic add with its intermediate result, as shown in the following 

code:

Figure 4 Tree reduction
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void buf2finalReduction(sycl::queue &q,
                    sycl::buffer<int> inbuf,
                    int &res) {
   const size_t num_work_items = inbuf.get_size() / sizeof(int);
   int work_group_size =
      q.get_device().get_info<sycl::info::device::max_work_group_size>();
   sycl::buffer<int> sum_buf(&res, sizeof(int));
   q.submit([&](auto &h) {
      sycl::accessor buf_acc(inbuf, h, sycl::read_only);
      sycl::accessor sum_acc(sum_buf, h, sycl::write_only, sycl::noinit);
      sycl::accessor<int, 1, sycl::access::mode::read_write,
              sycl::access::target::local> scratch(work_group_size, h);

      h.parallel_for(sycl::nd_range<1>(num_work_items, work_group_size),
         [=](sycl::nd_item<1> item) {
            size_t global_id = item.get_global_id(0);
            int local_id = item.get_local_id(0);
            int group_id = item.get_group(0);
            int sum = 0;

         if (global_id < data_size)
             scratch[local_id] = buf_acc[global_id];
         else
             scratch[local_id] = 0;
         for (int i = work_group_size / 2; i > 0; i >>= 1)
             item.barrier(sycl::access::fence_space::local_space);
             if (local_id < i)
                scratch[local_id] += scratch[local_id + i];
         }

         if (local_id == 0) {
            auto v = sycl::ONEAPI::atomic_ref<int,
   sycl::ONEAPI::memory_order::relaxed,sycl::ONEAPI::memory_scope::device,
   sycl::access::address_space::global_space>(sum_acc[0]);
            v.fetch_add(scratch[0]);
         }
       });
});

2.	By calling the same reduction kernel once again on the list of intermediate values produced by the 
work-groups to produce another set of intermediate values. At some point, once the number of 
intermediate results is small enough, one can simply use the global atomic updates instead of calling the 
kernel to get the final result. 
 
The kernel implementing this technique is shown below. Here, the output of the kernel is another set of 
values that are stored by each work-group in the output buffer.
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void buf2bufReduction(sycl::queue &q,
                     sycl::buffer<int> inbuf,
                     sycl::buffer<int> outbuf) {
   const size_t data_size = inbuf.get_size() / sizeof(int);
   int num_work_items = data_size;
   int work_group_size =
      q.get_device().get_info<sycl::info::device::max_work_group_size>();
   q.submit([&](auto &h) {
      sycl::accessor inbuf_acc(inbuf, h, sycl::read_only);
      sycl::accessor outbuf_acc(outbuf, h, sycl::write_only, sycl::noinit);
      sycl::accessor<int, 1, sycl::access::mode::read_write,
          sycl::access::target::local> scratch(work_group_size, h);

      h.parallel_for(sycl::nd_range<1>(num_work_items, work_group_size),
         [=](sycl::nd_item<1> item) {
            size_t global_id = item.get_global_id(0);
            int local_id = item.get_local_id(0);
            int group_id = item.get_group(0);
            int sum = 0;

            if (global_id < data_size)
                scratch[local_id] = buf_acc[global_id];
            else
                scratch[local_id] = 0;
            for (int i = work_group_size / 2; i > 0; i >>= 1)
               item.barrier(sycl::access::fence_space::local_space);
                if (local_id < i)
                   scratch[local_id] += scratch[local_id + i];
         }
         if (local_id == 0)
            outbuf_acc[group_id] = scratch[0];
       });
   });
}

int work_group_size =
   q.get_device().get_info<sycl::info::device::max_work_group_size>();
int ibufsize = (size + work_group_size - 1) / work_group_size;
sycl::buffer<int> *prev = &buf;
while (ibufsize > X) {
   int *bufptr=(int *)malloc(sizeof(int) * ibufsize);
   sycl::buffer<int> *cur = new sycl::buffer<int>(bufptr, ibufsize);
   ibufsize = (ibufsize + work_group_size-1) / work_group_size;
   buf2bufReduction(q, *prev, *cur);
   prev = cur;
}
buf2finalReduction(q, *prev, res);

The previous two kernels can be called as shown below to get the final result. Here, X is the size of the 

intermediate result where the final atomics-based reduction is called, and this value is chosen based on the 

efficiency of the global atomics-based reduction.

DPC++ Built-In Reduction Operator
DPC++ provides a summation reduction operator, which is used in the kernel below. In this case, the compiler 

chooses an implementation that is the most efficient for the underlying platform. It is usually recommended 

to use the built-in reduction operator.
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void builtinReduction(sycl::queue &q, 
                      sycl::buffer<int> inbuf, 
                      int &res) {
   sycl::buffer<int> sum_buf(&res,1);
   q.submit([&](auto &h) {
      sycl::accessor buf_acc(inbuf, h, sycl::read_only);
      sycl::accessor sum_acc(sum_buf, h, sycl::read_write);
      auto sumr = sycl::ONEAPI::reduction(sum_acc, sycl::ONEAPI::plus<>());
      h.parallel_for(sycl::nd_range<1>{data_size, 256}, sumr,
           [=](sycl::nd_item<1> item, auto &sumr_arg) {
               int glob_id = item.get_global_id(0);
               sumr_arg += buf_acc[glob_id];
      });
  });
}

Final Thoughts
Reduction is a common parallel programming pattern used in many applications. In this article, we explored 

some ways of implementing this operation in DPC++. The performance of these implementations can 

be quite different depending on the compiler and the target platform. My next article will explore the 

performance of these kernels on CPUs and GPUs.

Further Reading and Resources
	• oneAPI

	• Intel® oneAPI Toolkits

	• Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL

Get the oneAPI GPU 
Optimization Guide for 
the best performance 
with everything from 
Parallelization to Kernels 
to memory.

LEARN MORE

Visit Github to get your 
oneAPI code samples.

GO TO GITHUB

The Intel oneAPI Base Toolkit empowers 
you to develop high-performance 
applications and solutions across a variety 
of architectures. 

LEARN MORE
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[Editor’s note: This article was adapted from an example that I created for the oneAPI GPU Optimization 

Guide. The complete source code and build and run instructions are available in the oneAPI-samples 

repository. The guide and the repo are both excellent resources for oneAPI developers.]

Introduction to Cross-Correlation
Offloading individual oneMKL kernel functions to accelerators is straightforward, so let’s look at a more 

complex mathematical operation requiring multiple kernel functions: cross-correlation. Cross-correlation 

Henry A Gabb, Senior Principal Engineer and Editor-in-Chief of The Parallel Universe, 
Intel Corporation

Implementing the Fourier 
Correlation Algorithm 
Using oneAPI
Performing Complex Mathematical Operations 
with Just a Few Lines of DPC++ and oneMKL
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has many applications (e.g.: measuring the similarity of two 1D signals, finding the best translation to 

overlay similar images, volumetric medical image segmentation, etc.). Consider the following simple signals, 

represented as vectors of ones and zeros:
 
	 Signal 1: 0 0 0 0 0 1 1 0 
	 Signal 2: 0 0 1 1 0 0 0 0

The signals are treated as circularly shifted versions of each other, so shifting the second signal three 

elements relative to the first signal will give the maximum correlation score of two:
 
	 Signal 1: 0 0 0 0 0 1 1 0 
	 Signal 2: 	     0 0 1 1 0 0 0 0

	 Correlation: (1 * 1) + (1 * 1) = 2

Shifts of two or four elements give a correlation score of one. Any other shift gives a correlation score of zero. 

This is computed as follows:

 

 

where N is the number of elements in the signal vectors and i is the shift of sig2 relative to sig1.

Real signals contain more data (and noise), but the principle is the same whether you are aligning 1D signals, 

overlaying 2D images, or performing 3D volumetric image registration. The goal is to find the translation that 

maximizes correlation. However, the brute force summation shown above requires N multiplications and 

additions for every N shifts. In 1D, 2D, and 3D, the problem is O(N2), O(N3), and O(N4), respectively.

The Fourier correlation algorithm is a much more efficient way to perform this computation because it takes 

advantage of the O(N log N) complexity of the Fourier transform:
 
	 corr = IDFT(DFT(sig1) * CONJG(DFT(sig2)))

where DFT is the discrete Fourier transform, IDFT is the inverse DFT, and CONJG is the complex conjugate. 

The Fourier correlation algorithm can be composed using oneMKL, which contains optimized forward and 

backward transforms and complex conjugate multiplication functions. Therefore, the entire computation can 

be performed on the accelerator device.

Generating Some Test Data Using oneMKL
In many applications, only the final correlation result matters, so this is all that has to be transferred from the 

device back to the host. In this example, two artificial signals will be created on the device, transformed 

in place, and then correlated. The host will retrieve the final result and report the optimal translation and 

correlation score.
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Conventional wisdom suggests that buffering would give the best performance because it provides explicit 

control over data movement between the host and the device. To test this hypothesis, let’s generate two 

input signals: 

 
	 // Create buffers for signal data. This will only be used on the device. 
	 sycl::buffer<float> sig1_buf{N + 2}; 
	 sycl::buffer<float> sig2_buf{N + 2};
	 // Declare container to hold the correlation result (computed on the device, 
	 // used on the host) 
	 std::vector<float> corr(N + 2); 

Random noise is often added to signals to prevent overfitting during neural network training, to add visual 

effects to images, or to improve the detectability of signals obtained from suboptimal detectors, etc. The 

buffers are initialized with random noise, using a basic random number generator in oneMKL: 

 
	 // Initialize SYCL queue 
	 sycl::queue Q(sycl::default_selector{});

	 // Open new scope to trigger update of correlation result 
	 { 
	    sycl::buffer<float> corr_buf(corr);

	    // Initialize the input signals with artificial data 
	    std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value 
	    oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine 
								            // Set RNG distribution 
	    oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard>  
	    	  rng_distribution(-0.00005, 0.00005);

	    oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1_buf); // Noise 
	    oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2_buf); 

 

Notice that a new scope is opened and a buffer, corr_buf, is declared for the correlation result. When this 

buffer goes out of scope, corr will be updated on the host.

An artificial signal is placed at opposite ends of each buffer, similar to the trivial example above:
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	 Q.submit([&](sycl::handler &h) { 
	    sycl::accessor sig1_acc{sig1_buf, h, sycl::write_only}; 
	    sycl::accessor sig2_acc{sig2_buf, h, sycl::write_only}; 
	    h.single_task<>([=]() { 
		  sig1_acc[N - N / 4 - 1] = 1.0; 
		  sig1_acc[N - N / 4] = 1.0; 
		  sig1_acc[N - N / 4 + 1] = 1.0; // Signal 
		  sig2_acc[N / 4 - 1] = 1.0; 
		  sig2_acc[N / 4] = 1.0; 
		  sig2_acc[N / 4 + 1] = 1.0; 
	    }); 
	 }); // End signal initialization

Implementing the 1D Fourier Correlation Using Explicit Buffering
Now that the signals are ready, let’s transform them using the DFT functions in oneMKL: 

 
	 // Initialize FFT descriptor 
	 oneapi::mkl::dft::descriptor<oneapi::mkl::dft::precision::SINGLE, 
					          oneapi::mkl::dft::domain::REAL> 
	    transform_plan(N); 
	 transform_plan.commit(Q);

	 // Perform forward transforms on real arrays 
	 oneapi::mkl::dft::compute_forward(transform_plan, sig1_buf); 
	 oneapi::mkl::dft::compute_forward(transform_plan, sig2_buf); 

 

A single-precision, real-to-complex forward transform is committed to the SYCL queue, and then an in-

place DFT is performed on the data in both buffers. The result of DFT(sig1) must now be multiplied by 

CONJG(DFT(sig2)). This could be done with a hand-coded Data Parallel C++ (DPC++) kernel: 

 

	 Q.submit([&](sycl::handler &h)
	 { 
	    sycl::accessor sig1_acc{sig1_buf, h, sycl::read_only}; 
	    sycl::accessor sig2_acc{sig2_buf, h, sycl::read_only}; 
	    sycl::accessor corr_acc{corr_buf, h, sycl::write_only};

	    h.parallel_for<>(sycl::range<1>{N/2}, [=](auto idx) 
	    { 
		  corr_acc[idx*2+0] = sig1_acc[idx*2+0] * sig2_acc[idx*2+0] + 
					       sig1_acc[idx*2+1] * sig2_acc[idx*2+1]; 
		  corr_acc[idx*2+1] = sig1_acc[idx*2+1] * sig2_acc[idx*2+0] - 
					       sig1_acc[idx*2+0] * sig2_acc[idx*2+1]; 
	    }); 
	 });
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However, this basic implementation is unlikely to give optimal cross-architecture performance. Fortunately, 

oneMKL provides a convenience function, oneapi::mkl::vm::mulbyconj, that can be used for this step. The 

mulbyconj function expects std::complex<float> input, but the buffers were initialized as the float data type. 

Even though they contain complex data after the forward transform, the buffers will have to be recast: 

 
	 // Compute: DFT(sig1) * CONJG(DFT(sig2)) 
	 auto sig1_buf_cplx = 
	    sig1_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2); 
	 auto sig2_buf_cplx = 
	    sig2_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2); 
	 auto corr_buf_cplx = 
	    corr_buf.template reinterpret<std::complex<float>, 1>((N + 2) / 2); 
	 oneapi::mkl::vm::mulbyconj(Q, N / 2, sig1_buf_cplx, sig2_buf_cplx, 
					        corr_buf_cplx);

 

The IDFT step completes the computation: 

 

	 // Perform backward transform on complex correlation array 
	 oneapi::mkl::dft::compute_backward(transform_plan, corr_buf); 
    } // Buffer holding correlation result is now out of scope, forcing update of 
	 // host container

 

When the scope that was opened at the start of this example is closed, the buffer holding the correlation 

result goes out of scope, forcing an update of the host container. This is the only data transfer between the 

host and the device.

The complete source code (fcorr_1d_buffers.cpp) is available in the oneAPI-samples repository.

Implementing the 1D Fourier Correlation Using USM
The Fourier correlation algorithm will now be reimplemented using Unified Shared Memory (USM) to 

compare to explicit buffering. Only the differences in the two implementations will be highlighted. First, the 

signal and correlation arrays are allocated in USM, and then initialized with artificial data:
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	 // Initialize signal and correlation arrays 
	 auto sig1 = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); 
	 auto sig2 = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context); 
	 auto corr = sycl::malloc_shared<float>(N + 2, sycl_device, sycl_context);

	 // Initialize input signals with artificial data 
	 std::uint32_t seed = (unsigned)time(NULL); // Get RNG seed value 
	 oneapi::mkl::rng::mcg31m1 engine(Q, seed); // Initialize RNG engine 
                                             	  // Set RNG distribution 
	 oneapi::mkl::rng::uniform<float, oneapi::mkl::rng::uniform_method::standard> 
	     rng_distribution(-0.00005, 0.00005);

	 // Warning: These statements run on the device. 
	 auto evt1 = 
	     oneapi::mkl::rng::generate(rng_distribution, engine, N, sig1); // Noise 
	 auto evt2 = oneapi::mkl::rng::generate(rng_distribution, engine, N, sig2); 
	 evt1.wait(); 
	 evt2.wait();

	 // Warning: These statements run on the host, so sig1 and sig2 will have to be 
	 // updated on the device. 
	 sig1[N - N / 4 - 1] = 1.0; 
	 sig1[N - N / 4] = 1.0; 
	 sig1[N - N / 4 + 1] = 1.0; // Signal 
	 sig2[N / 4 - 1] = 1.0; 
	 sig2[N / 4] = 1.0; 
	 sig2[N / 4 + 1] = 1.0;

 

The rest of the implementation is largely the same, except pointers to USM are passed to the oneMKL 

functions instead of SYCL buffers:

	 // Perform forward transforms on real arrays 
	 evt1 = oneapi::mkl::dft::compute_forward(transform_plan, sig1); 
	 evt2 = oneapi::mkl::dft::compute_forward(transform_plan, sig2);

	 // Compute: DFT(sig1) * CONJG(DFT(sig2)) 
	 oneapi::mkl::vm::mulbyconj( 
	    Q, N / 2, reinterpret_cast<std::complex<float> *>(sig1), 
	    reinterpret_cast<std::complex<float> *>(sig2), 
	    reinterpret_cast<std::complex<float> *>(corr), {evt1, evt2}) 
	    .wait();

	 // Perform backward transform on complex correlation array 
	 oneapi::mkl::dft::compute_backward(transform_plan, corr).wait(); 
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It is also necessary to free the allocated memory:
	 sycl::free(sig1, sycl_context); 
	 sycl::free(sig2, sycl_context); 
	 sycl::free(corr, sycl_context);

The USM implementation has a more familiar syntax. It is also conceptually simpler because it relies on 

implicit data transfer handled by the DPC++ runtime. However, a programmer error hurts performance.

Notice the warning messages in the previous code snippets. The oneMKL random number generation engine 

is initialized on the device, so sig1 and sig2 are initialized with random noise on the device. Unfortunately, 

the code adding the artificial signal runs on the host, so the DPC++ runtime has to make the host and 

device data consistent. The signals used in Fourier correlation are usually large, especially in 3D imaging 

applications, so unnecessary data transfer degrades performance.

Updating the signal data directly on the device keeps the data consistent, thereby avoiding the unnecessary 

data transfer:

	 Q.single_task<>([=]() { 
	    sig1[N - N / 4 - 1] = 1.0; 
	    sig1[N - N / 4] = 1.0; 
	    sig1[N - N / 4 + 1] = 1.0; // Signal 
	    sig2[N / 4 - 1] = 1.0; 
	    sig2[N / 4] = 1.0; 
	    sig2[N / 4 + 1] = 1.0; 
	 }).wait();

The explicit buffering and USM implementations have equivalent performance, indicating that the DPC++ 

runtime is good at avoiding unnecessary data transfers (provided the programmer pays attention to data 

consistency).

The complete source code (fcorr_1d_usm.cpp) is available in the oneAPI-samples repository.
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Final Thoughts
Note that the final step of finding the location of the maximum correlation value is performed on the host:
	 // Find the shift that gives maximum correlation value 
	 float max_corr = 0.0; 
	 int shift = 0; 
	 for (unsigned int idx = 0; idx < N; idx++) { 
	   if (corr[idx] > max_corr) { 
	     max_corr = corr[idx]; 
	     shift = idx; 
	   } 
	 } 
	 shift = 
	    (shift > N / 2) ? shift - N : shift; // Treat the signals as circularly 
                                              // shifted versions of each other. 
	 std::cout << "Shift the second signal " << shift 
		      << " elements relative to the first signal to get a maximum, " 
			    "normalized correlation score of " 
		      << max_corr / N << "." << std::endl;

It would be better to do this computation on the device, especially when the input data is large. Fortunately, 

the MAXLOC reduction is a common parallel pattern that can be implemented using DPC++. This is left as 

an exercise for the reader, but Figure 14-11 of Data Parallel C++ provides a suitable example to help you get 

started. If you’re not in the mood to exercise, the USM example in the oneAPI-samples repository has the 

MAXLOC reduction already implemented so that the entire computation is done on the device.
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Clícia Pinto, Technical Leader and Performance Engineer;
and Lucas Batista, Pedro de Santana, and Georgina González, HPC Developers; 
Supercomputing Center SENAI CIMATEC

Reverse Time Migration (RTM) takes advantage of the finite-difference (FD) method to compute numerical 

approximations for the acoustic wave equation. It is a computational bottleneck for RTM applications, and 

therefore needs to be optimized to guarantee timely results and efficiency when allocating resources for 

hydrocarbon exploration. This article describes our experience migrating a CUDA-based RTM code to Data 

Parallel C++ (DPC++) using the Intel® DPC++ Compatibility Tool.

Using oneAPI to Speed 
Up the Finite-Difference 
Method
Migrating a CUDA-Based Stencil Computation 
to DPC++
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RTM Overview and Input Data
In several seismic imaging methods, a stencil is applied in the FD scheme as a numerical solution for the 

wave equation. This is the case for RTM, widely used in the oil and gas industry to generate images of 

subsurface structures. Despite the advantages inherent in the method, two major computational bottlenecks 

characterize it: the high number of floating-point operations during the propagation step and the difficulty in 

storing the wavefields in main memory. To mitigate the effect of these bottlenecks, engineers seek to explore 

both the intrinsic parallelism of tasks and the optimization of computational resources, designing solutions 

capable of running on different accelerators. The optimization of this method represents a great economic 

advantage for exploration geophysics because it reduces the chances of errors in well drilling. As proposed 

by Claerbout1, the RTM algorithm usually has a forward time propagation, a backward propagation, and a 

cross-correlation of image condition. The flowchart for the RTM algorithm highlights these steps along with 

host and device communication (Figure 1). 

Figure 2 shows the stencil computation in a 2D CUDA-based implementation where order is the order of 

the FD scheme, nx and nz are the size of the input matrix that represents a 2D acoustic velocity model, p 

is the source/receiver wavefield, cx and cy are the x- and y-axes of the FD coefficients, respectively, and l is 

the extrapolated wavefield. In the entire RTM algorithm, the vector P stores the state of pressure points in 

different time steps. Because of its compute- and data-intensive characteristics, RTM is a suitable candidate 

for acceleration by specialized processing units.

Figure 1. Simplified 2D-RTM flowchart
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Migrating a Reference RTM to oneAPI
The Intel DPC++ Compatibility Tool helps port CUDA language kernels and library API calls to DPC++. 

Typically, 80–90% of CUDA source code is automatically migrated, so we structured this process in three 

steps: preparation, migration, and review. The preparation step seeks to adapt the source code to the 

migration tool. At this stage, it is necessary to make sure that all CUDA header files are accessible in the 

default location or in a custom location by using the --cuda-include-path=<path/to/cuda/include> option. In 

the migration step, the Intel DPC++ Compatibility Tool takes the original application as input and generates 

annotated DPC++ code. During the review step, we inspect the automatic code conversions, review the 

annotations to help manually convert unmigrated code, and look for possibilities for code improvement.

During our first migration experience, we observed that the Intel DPC++ Compatibility Tool migrates CUDA 

memory-copy API calls to sycl::queue.memcpy() as shown in Figure 3. Despite having obtained a functional 

and error-free migrated source code, explicit memory management may not provide the best performance. 

To investigate memory management improvements, we manually changed the migrated source code to use 

SYCL buffers and accessors for each data object.

	 Input: order, nx, nz,*p, *l, *cx, *cy 

	 Output: *l  

	 Assignments: h_order ← order/2  

	 i← h_order + blockId.x * blockDim.x + threadId.x 

	 j ← h_order + blockId.y * blockDim.y + threadId.y 

	 mult ← i * nz 

	 if < nx – h_order then 

		     if < nz - h_order then 

			          for k = 0 to h_order do 

				             aux =  k - h_order 

				             aux += p[mult + j+aux] * cz[k] 

				             aux += p[(i+aux)*nz + j] * cx[k] 

			          end for 

			          l[mult + j] = accz + accx 

			          accz = 0 

			          accx = 0 

		      end if 

	 end if

Figure 2. RTM Stencil Computation Algorithm
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Figure 4. DPC++ Forward propagation (simplified)

dpct::device_ext &dev_ct1 = dpct::get_current_device(); 

sycl::queue &q_ct1 = dev_ct1.default_queue(); 

q_ct1.memcpy(d_p, p[0], mtxBufferLength).wait(); 

             q_ct1.memcpy(d_pp, pp[0], mtxBufferLength).wait(); 

             q_ct1.memcpy(d_v2, v2[0], mtxBufferLength).wait(); 

             q_ct1.memcpy(d_coefs_x, coefs_x, coefsBufferLength).wait(); 

             q_ct1.memcpy(d_coefs_z, coefs_z, coefsBufferLength).wait(); 

             q_ct1.memcpy(d_taperx, taperx, brdBufferLength).wait(); 

             q_ct1.memcpy(d_taperz, taperz, brdBufferLength).wait();

void fd_forward(int order, float **p, float **pp, float **v2, int nz, int nx, int nt, int is, 

int sz, int *sx, float *srce, int propag) 

{ 

dpct::device_ext &dev_ct1 = dpct::get_current_device(); 

sycl::queue &q_ct1 = dev_ct1.default_queue(); 

sycl::range<3> dimGrid(1, gridz, gridx); 

sycl::range<3> dimGridTaper(1, gridBorder_z, gridx); 

sycl::range<3> dimGridSingle(1, 1, 1); 

sycl::range<3> dimGridUpb(1, 1, gridx); 

sycl::range<3> dimBlock(1, sizeblock, sizeblock);

{ 

sycl::buffer<float, 1> *b_p = new sycl::buffer<float, 1>(p[0], sycl::range<1>(nxe*nze)); 

sycl::buffer<float, 1> *b_pp = new sycl::buffer<float, 1>(pp[0], sycl::range<1>(nxe*nze)); 

sycl::buffer<float, 1> b_v2(v2[0], sycl::range<1>(nxe*nze)); 

sycl::buffer<float, 1> b_coefs_x(coefs_x, sycl::range<1>(order+1)); 

sycl::buffer<float, 1> b_coefs_z(coefs_z, sycl::range<1>(order+1)); 

sycl::buffer<float, 1> b_taperx(taper_x, sycl::range<1>(nxb)); 

sycl::buffer<float, 1> b_taperz(taper_z, sycl::range<1>(nxb)); 

sycl::buffer<float, 1> *b_swap;

for (int it = 0; it < nt; it++){ 

	    b_swap  = b_pp; 

	    b_pp = b_p; 

	    b_p = b_swap;

	    kernel_tapper() 

	    kernel_lap() 

	    kernel_time() 

	    kernel_scr() 

} 

} 

}

Figure 3. Migrated memory management
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Figure 4 shows DPC++ migrated function that performs the forward time propagation, where nt is the 

number of time steps needed to model the wave equation. This algorithm shows data objects defined as 

buffers that are used to control and modify the device's memory. The backward propagation follows the 

same structure. Both forward and backward functions perform kernel invocations to handle GPU execution.

Figure 5 shows DPC++ kernel invocation using the kernel_lap call because that is the main procedure related 

to stencil computation. Each kernel from our migrated application is submitted to queues targeting a specific 

device, where data access requirements must be completed before a parallel kernel is launched.

The final RTM image was used to compare the original CUDA implementation to the migrated DPC++ code. 

To generate the seismic image, we used the input parameters shown in Table 1 and the velocity model 

shown in Figure 6. The respective output images from the CUDA and DPC++ implementations are shown in 

Figure 7. The final image from the DPC++ implementation achieved satisfactory accuracy compared to the 

reference.

Figure 5. DPC++ kernel_lap function invocation

q_ct1.submit([&](sycl::handler &cgh) { 

auto acc_pr = b_pr->get_access<sycl::access::mode::read_write>(cgh); 

auto d_laplace_ct4 = d_laplace; 

auto acc_coefs_x = b_coefs_x.get_access<sycl::access::mode::read>(cgh); 

auto acc_coefs_z = b_coefs_z.get_access<sycl::access::mode::read>(cgh);

cgh.parallel_for( 

	 sycl::nd_range<3>(dimGrid * dimBlock, dimBlock), 

	 [=](sycl::nd_item<3> item_ct1) { 

		    kernel_lap(order, nx, nz, acc_pr, d_laplace_ct4,  

		    acc_coefs_x, acc_coefs_z, item_ct1); 

	 }); 

});
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Figure 7. Seismic image generated by the original CUDA-based 
RTM source code (left) and the migrated DPC++ code (right)

Figure 6. Koslov 
velocity model

Table 1. Parameter description for the 
specific modeling presented
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Figure 8. Roofline views of the DPC++ version running on an Intel® Gen9 HD 
Graphics NEO using explicit memory allocation (top) and buffers/accessors 

memory management (bottom)

Memory Management Improvements
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In order to explore DPC++ memory management options, we developed a buffer/accessor-based version 

from our migrated application. This strategy eliminates the need to explicitly allocate and free memory 

on the device. It also eliminates the need to manage data transfer to/from different processing units. To 

achieve this, we created buffers/accessors for each structure that were explicitly copied to the device. The 

buffers are destroyed after the computation is completed, and data are copied back to the host (memory 

synchronization). Braces create a scope around the buffer definition where data objects can be shared. 

When execution leaves this scope, there is a synchronization between execution flows and the buffers are 

destroyed. For comparison between original and modified migrated source code, we performed a roofline 

analysis using Intel® Advisor to estimate the performance by evaluating the hardware limitations and data 

transactions between the different memory layers on the system.

Figure 8 shows the roofline graph for a simplified RTM execution with only a single time step. Since we 

have a reduced number of floating-point operations, we can expect low-performance metrics. The top 

graph shows the roofline for the migrated source code that uses explicit data management. It achieved a 

performance of 6.052 GFLOPS, with an arithmetic intensity of 3.617 FLOP/byte. Arithmetic intensity can 

be understood as the ratio of total floating-point operations to the amount of data being moved (memory 

traffic). The bottom graph shows the roofline for the buffer/accessor version, which achieved twice the 

performance: 12.246 GFLOPS with an arithmetic intensity of 17.896 FLOP/byte.

Conclusion
This paper describes a successful oneAPI proof-of-concept to migrate an RTM code from CUDA to DPC++ 

using the Intel DPC++ Compatibility Tool, and then tune it using Intel Advisor. The migrated source code is 

more readable and easier to maintain because it unifies the algorithm execution flow for our application in a 

unique structure. Besides migration experience, we could easily explore memory management by applying 

buffers/accessors to achieve better performance and arithmetic intensity. The source code described in this 

article is available in a public repository along with instructions2.
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I’m pleased to announce that a set of Advanced Ray Tracing APIs are being made available for comment 

and inclusion in the oneAPI specification. The rapid growth of ray tracing compute across film, scientific 

visualization, design, and gaming suggests that adding these APIs to the oneAPI specification for XPU 

architectures will help foster robust and efficient development in this area.

Advanced Ray Tracing 
APIs Proposed for the 
oneAPI Specification
“Write Once” High-Fidelity Ray Tracing across 
Multiple Vendors’ Accelerators

Jim Jeffers, Senior Principal Engineer, Senior Director of Advanced Rendering and 
Visualization, Intel Corporation

Image courtesy Bentley Motors Limited: Advanced Ray Tracing via OSPRay Studio, Embree and Open Image Denoise
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By introducing ray tracing capabilities to the oneAPI specification, software developers across the industry 

will have the ability to “write once” for high-fidelity ray-traced computations across multiple vendors’ systems 

and accelerators. Standardizing these interfaces will provide well-designed, tried and true APIs and options 

for broad compute and rendering infrastructure development. The functionality is subdivided into several 

domains:
	• Geometric ray tracing computations

	• Volumetric computation and rendering

	• Image denoising

	• Scalable rendering and visualization infrastructure

Open source implementations of the ray tracing APIs are in active use via the Intel® oneAPI Rendering Toolkit. 

The libraries are used in a wide variety of software applications’ 3D graphics computations for film and 

television photorealistic visual effects and animation, scientific visualization, high-performance computing 

computations, computer-aided design, architectural engineering, gaming, and more.

The ray tracing libraries recommended for the oneAPI specification include:
	• Academy Award*-winning Intel® Embree — geometric ray tracing

	• Intel® Open Volume Kernel Library (Open VKL) — volumetric processing

	• Intel® Open Image Denoise — AI-based denoiser

	• Intel® OSPRay — scalable middleware rendering API

The specification review process and robust community feedback on these ray tracing APIs' features and 

functionality, recent adoption by Apple and others on ARM-based processors, and Intel’s own development 

preparation for future Intel® Iris® Xe graphics confirm these ray tracing APIs are cross-architecture and 

industry-standard ready. The ease of integration and benefits the APIs provide for developers are well 

known by open source community partners, and make this a logical next step in delivering the benefits of an 

open, community-driven, cross-platform, ray tracing ecosystem.

I invite developer feedback and collaboration to further extend these APIs for application development. 

Contribute to the oneAPI specification through this GitHub repository.

If you’re an animator, digital content creator, architectural engineer, or skilled gamer, 
push the boundaries of visualization with the Intel oneAPI + Rendering Toolkit. 
Learn More >

PODCAST

On a Mission of Disaster Management 
& Scientific Discoveries

LISTEN NOW
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Elvis G Fefey, Software Development Engineer, Michael J Voss, Principal Software 
Engineer, and Maxim Y Shevtsov, Deep Learning Software Engineer, Intel Corporation

OpenVINO™ and the Need for a Coordination Framework 
With the increasing availability of data in today’s world, traditional approaches to solving problems are being 

replaced by machine learning (ML) methods that learn from the data. The two main stages in an end-to-end 

ML pipeline are training and inferencing. Training is where data is used to create a model. Inferencing is where 

the model generates output from new data.

oneTBB Flow Graph and 
the OpenVINO™ Inference 
Engine
Expressing Dependencies across Deep 
Learning Models in C++
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The Intel® Distribution of OpenVINO™ toolkit is a developer tool suite for high-performance deep learning 

inference on Intel® architectures. While we are starting to see the emergence of dedicated inference 

accelerators, the ubiquity of multicore CPUs means that better inference performance can deliver significant 

gains to a larger number of users than ever before. OpenVINO offers a multithreading model that is portable 

and free of low-level details. It’s not necessary for users to explicitly start and stop any threads, or even know 

how many processors or cores are being used. This results in optimized performance that is easy to deploy.

As ML becomes more complex, inferencing applications require multiple models, with some models 

depending on the output of other models. Such applications require coordination that enforces 

dependencies among the models during execution, while allowing models that can make progress 

independently to execute concurrently.

The OpenVINO Inference Engine itself does not provide a way to piece different models together. Its primary 

role is to provide mechanisms to tune and deploy high-performing models onto Intel architectures. The 

Intel Distribution of OpenVINO toolkit, however, does include DL Streamer, an extension of the widely 

used, open source GStreamer framework. GStreamer is a framework for creating complex media analytics 

pipelines that enforces dependencies between models. DL Streamer extends GStreamer to provide pipeline 

interoperability and optimized inferencing across Intel architectures. Both DL Streamer and GStreamer are 

excellent choices for building complex media pipelines, but not all developers want or need these larger 

frameworks.

In this article, we describe how the Intel® oneAPI Threading Building Blocks (oneTBB) library included in the 

Intel Distribution of the OpenVINO toolkit can coordinate OpenVINO inferencing models using a lightweight 

C++ alternative to GStreamer or DL Streamer.

oneTBB Flow Graph 
oneTBB is a generic C++ library for parallel programming on CPUs. It has a long history, being an evolution 

of the Threading Building Blocks (TBB) library that has been available since 2006. It provides generic parallel 

algorithms, a flow graph interface, concurrent containers, a task-based work scheduler, a scalable memory 

manager, and auxiliary features that make parallel programming easier. The flow graph feature provides 

functions and classes (in the tbb::flow namespace) for applications that can be expressed as graphs of 

computations. A flow graph is used when you want to express the execution dependencies in your code, or if 

you have a streaming application that requires more than just a simple linear pipeline.
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The flow graph interface consists are three main types of components:
1.	A graph object that represent a whole graph of computations

2.	Nodes that execute user-supplied lambda expressions, join streams of data together, or split and 
broadcast data

3.	Edges that express the dependencies or communication channels between nodes

Here is a summary of some of the nodes that are useful in building a graph of inference engine models:

	• source_node (or input_node): A source_node provides functionality to generate data that is fed 

into the rest of the graph. This node can be used for reading and making available frames from a 

video stream. Note that in oneTBB, source_node has been replaced with input_node, which has 

a different API. However, the latest version of OpenVINO at the time of writing is shipped with 

source_node.

	• function_node: A function_node body executes user-provided code on each data item that flows 

into the node to generate the data that flows out of the node. This node type can be used to run 

the inference computations. Function nodes that do not directly or indirectly depend on each other 

(as expressed by the graph edges) are allowed to execute concurrently. If the edges in the graph 

express a dependence between nodes, the oneTBB runtime library will enforce the dependence 

and ensure that the nodes execute in the correct order. A function_node can be configured to allow 

or disallow concurrent execution of its user-provided body on different data items as they flow 

through the node, making it suitable for operating on different data items in parallel, as well as for 

executing operations that must be serialized, such as displaying processed video frames in the 

correct order.

	• sequencer_node: In cases where the output is required in a certain order, the sequencer node can 

be used to maintain that order. For example, it can be used to sequence video frames that have 

been computed out of order.

	• join_node: The join node brings multiple streams of data together. If independently computed 

outputs need to be brought together as a unit, a join_node can be used.

 
Sample Application 
To demonstrate how oneTBB is used to coordinate OpenVINO inferencing, we adapted a security barrier 

demo that is included in the Intel Distribution of OpenVINO toolkit. It implements inferencing on three 

trained models: a vehicle detector that detects vehicles in a video frame, a vehicle classifier that classifies the 

color and type of the detected vehicle, and a license plate recognition model that extracts the license plate 

text. The vehicle classifier and license plate recognition models depend on the vehicle detector model.
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To set up the graph, we use a source_node to read the video frames, followed by a function_node to perform 

the vehicle detection. Two other function nodes are used to run the vehicle classifier and license plate 

recognition. A join_node is used to aggregate the results from each frame, followed by a sequencer_node to 

reorder the inferenced video frames. The final node is another function_node that shows or saves the results 

as desired. The graph is shown in Figure 1.

Reading the Input Video Frames 
We use a source_node to generate images from the video for inferencing. It will repeatedly execute its body 

and generate frames until a terminating condition is encountered. In this case, the terminating condition is an 

empty frame at the end of the video file. The template parameter of the source_node is the data type of the 

output. The node returns a std::tuple comprised of an image and a corresponding image number. The frame 

number is included because it is required downstream for aggregation and to reestablish the frame order. If 

this were not required, the frame number could be omitted.

We begin by including the header file with the flow graph nodes.

#include "tbb/flow_graph.h"

We declare several data types to hold the messages that flow through the graph. We use f 
to denote that the message includes the frame itself, n to mean that the messages includes 
the frame number, v to mean it includes the bounding rectangles for the vehicles, p to 
mean it includes the bounding rectangles for the license plates, and s to mean it includes a 
vector<std::string>.

Figure1. Flow graph of the security barrier demo
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using fn_t = std::tuple<cv::Mat, size_t>; 
using fnvp_t = std::tuple<cv::Mat, size_t,  
                          std::vector<cv::Rect> /* vehicles */,  
                          std::vector<cv::Rect> /* plates */ >; 
using sn_t = std::tuple<std::vector<std::string>, size_t>;

We also initialize a frame counter and a capture object to read the frames.
size_t frame_nu = 0; 
VideoCapture my_video(“video_file_name”);

We then create a flow graph object and the source_node that reads the frames.
tbb::flow::graph g; 
tbb::flow::source_node<fn_t> src_node(g, 
  [&](fn_t &fn)->bool { 
    cv::Mat f; 
    my_video.read(f); 
    if (f.empty()) { return false; } 
    std::get<0>(fn) = f; 
    std::get<1>(fn) = frame_nu++; 
    return true; 
  }, false);

Inference Computations 
The security barrier demo comes with three classes for detection, classification, and license plate recognition. 

The classes provide functionality to create inference requests, to submit inference computations, and to 

collect results. We instantiate the following classes: detector for detection, vclassifier for classification, and 

preader for license plate recognition.

Vehicle Detection 
A function_node is used for vehicle detection inference computations. There are two template parameters 

for the function node: the input data type that the function node receives and the data type that the 

function node sends out. The input of the vehicle detector is the pair of image and corresponding number 

received from the source_node. In the body of the node, we create an inference request, prepare the blob 

for inferencing, start the inference computation, and then wait for the results of the computation to be ready. 

The result from the detector is a confidence level, a label showing whether it is a vehicle or a license plate, 

and the coordinates of the detected object (x, y, width, and height). We populate a vector with a list of the 

detected objects on each frame and send it downstream for further processing. The output type, which we 

named fnvp_t, contains the frame, the frame number, and a list of locations of the detected vehicles. 
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tbb::flow::function_node<fn_t, fnvp_t> detector_node(g, 
    tbb::flow::unlimited, [&](const fn_t &fn)->fnvp_t 
{ 
    std::vector<cv::Rect> vehicles, plates; 
    auto req = detector.createInferRequest(); 
    auto& f = std::get<0>(fn); 
    auto& n = std::get<1>(fn); 
    detector.setImage(req, f); 
    req.StartAsync(); 
    req.Wait(IInferRequest::WaitMode::RESULT_READY); 
    auto results = detector.getResults(req, f.size()); 
    for (auto& r : results) { 
        if (r.label == 1) { 
            if (r.confidence > 0.5) { 
                vehicles.push_back(r.location &  
                cv::Rect{cv::Point(0, 0), f.size()}); 
             } 
         } 
         if (r.label == 2) { 
             if (r.confidence > 0.5) { 
                 plates.push_back(r.location & 
                 cv::Rect{cv::Point(0, 0), f.size()}); 
             } 
         } 
     } 
     return std::make_tuple(f, n, vehicles, plates); 
}); 

Detected Vehicle Classification 
The vehicle classifier receives the frame, the frame number, and a list of detected vehicle locations. For each 

vehicle, we create an inference request, prepare the blob, start the inferencing to classify the vehicle, and 

then collect the results when they are ready. The classification results are the color and type of the vehicle. 

This is passed downstream for further processing.

The datatype for the output of the classifier is a list of strings.
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tbb::flow::function_node<fnvp_t, sn_t> vclassifier_node(g, 
    tbb::flow::unlimited, [&](const fnvp_t &fnvp)->sn_t 
{ 
    auto& f = std::get<0>(fnvp); 
    auto& n = std::get<1>(fnvp); 
    auto& v = std::get<2>(fnvp); 
    std::vector<std::string> rlist; 
     
    if (!FLAGS_m_va.empty() && !v.empty()) { 
        for( auto& x : v) { 
            auto req = vclassifier.createInferRequest(); 
            vclassifier.setImage(req, f, x); 
            req.StartAsync(); 
            req.Wait(IInferRequest::WaitMode::RESULT_READY); 
            auto r = vclassifier.getResults(req); 
            rlist.push_back((r.first + " " + r.second)); 
        } 
    } 
    return std::make_tuple(rlist, n); 
});

 
Detected Vehicle License Plate Recognition 
Like the classifier, the license plate recognition receives the frame, its number, and a list of detected vehicles 

locations. Likewise, an inference request is created and submitted. The result is a string of the license plate 

number.
tbb::flow::function_node<fnvp_t, sn_t> preader_node(g, 
    tbb::flow::unlimited, [&](fnvp_t fnvp)->sn_t 
{ 
    auto& f = std::get<0>(fnvp); 
    auto& n = std::get<1>(fnvp); 
    auto& p = std::get<3>(fnvp); 
    std::vector<std::string> rlist; 
 
    if (!FLAGS_m_lpr.empty() && !p.empty()) { 
        for( auto& x : p ) { 
            auto req = preader.createInferRequest(); 
            preader.setImage(req, f, x); 
            req.StartAsync(); 
            req.Wait(IInferRequest::WaitMode::RESULT_READY); 
            auto r = preader.getResults(req); 
            rlist.push_back(r); 
        } 
    } 
            return std::make_tuple( rlist, n); 
});
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If only the raw inferencing results are required, the nodes described to this point should be enough. However, 

if postprocessing is required, the nodes that follow can be added.

 
Aggregation 
Here we aggregate the computations for each frame. Using the frame number as the key, a tag-matching 

join_node is used to put together all the results for each frame. Each frame will therefore have its number, the 

classification result of any detected vehicles, and a string of any detected license plates.
tbb::flow::join_node<std::tuple<fnvp_t, sn_t, sn_t, 
                                tbb::flow::tag_matching > 
agg_node(g, [](const fnvp_t &x) { return std::get<1>(x); }, 
            [](const sn_t &x)   { return std::get<1>(x); }, 
            [](const sn_t &x)   { return std::get<1>(x); });

 
Sequencing 
The computation is done in parallel, so it is possible that the inferencing results for the frames can complete 

out of order. With a sequencer_node, we can reorder the frames if video playback is required.
tbb::flow::sequencer_node<std::tuple<fnvp_t, sn_t, sn_t >> 
seq_node(g, [] (const std::tuple<fnvp_t, sn_t, sn_t > &x) -> size_t { 
              return std::get<1>(std::get<0>(x)); 
             });

 
Superimposing the Results
Lastly, we implement a function_node that superimposes the locations of the detected vehicles and license 

plate numbers onto the frame. The results can be played back or saved to an output video. In cases where 

the computations complete much faster than the playback rate, a throttling mechanism can be used to 

prevent a build-up of processed frames.
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tbb::flow::function_node<std::tuple<fnvp_t, sn_t, sn_t>, cv::Mat> 
    output_node(g, tbb::flow::serial, 
    [&](std::tuple<fnvp_t, sn_t, sn_t> agg_results) 
{ 
    auto& f = std::get<0>(std::get<0>(agg_results)); 
    auto& v = std::get<2>(std::get<0>(agg_results)); 
    auto& p = std::get<3>(std::get<0>(agg_results)); 
    auto& vs = std::get<0>(std::get<1>(agg_results)); 
    auto& ps = std::get<0>(std::get<2>(agg_results)); 
    auto frame_nu = std::get<1>(std::get<0>(agg_results)); 
 
    for (auto &r : v) { 
        cv::rectangle(f, r, {0, 255, 0}, 4); 
    } 
    for (auto &r : p) { 
        cv::rectangle(f, r, {0, 255, 0}, 4); 
    } 
    if(!v.empty()) { 
        for (size_t i=0; i< v.size(); ++i) { 
            cv::putText( f, vs[i], cv::Point{v[i].x, v[i].y + 35}, 
            cv::FONT_HERSHEY_COMPLEX, 1.3, cv::Scalar(0, 255, 0), 4); 
        } 
    } 
 
   if (!p.empty()) { 
       for (size_t i=0; i< p.size(); ++i) { 
           slog::info << "Frame Number: " << frame_nu << slog::endl; 
           slog::info << "License Plate: " << ps[i] << slog::endl; 
           slog::info << "====" << slog::endl; 
 
           cv::putText( f, ps[i], cv::Point{p[i].x, p[i].y + 35}, 
           cv::FONT_HERSHEY_COMPLEX, 1.3, cv::Scalar(0, 255, 0), 4); 
       } 
    } 
    return f; 
});

 
Building the Graph and Expressing Dependencies
The graph is built and dependencies are expressed with the oneTBB function tbb::flow::make_edge. It takes 

a predecessor node and a successor node. This can be used to build any desired graph topology. The only 

requirement is to make sure that the data types on the edges match. That is, the data type of the output 

node matches the data type of the input node.
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We build the graph by making an edge from the frame generation to the vehicle detection.
  make_edge(src_node, detector_node);

The vehicle detector is connected in parallel to the classifier and license plate recognition.
  make_edge(detector_node, vclassifier_node); 
  make_edge(detector_node, preader_node);

The detector, classifier, and license plate recognition are connected to the aggregator. The detector provides 

the frame, while the classifier and the license plate recognition provide the inference results for that frame for 

aggregation.
  make_edge(detector_node, tbb::flow::input_port<0>(agg_node)); 
  make_edge(vclassifier_node, tbb::flow::input_port<1>(agg_node)); 
  make_edge(preader_node, tbb::flow::input_port<2>(agg_node));

The aggregator is connected to the sequencer for reordering of the frames.
  make_edge(agg_node, seq_node);

The sequencer is connected to the output node to output the results.
  make_edge(seq_node, output_node);

 
Activating the Graph
The final step is to activate the graph so that it can run. This is done with the activate() member of the source 

node. A call to g.wait_for_all() ensures that all computations in the graph are completed before the graph 

exits.
    src_node.activate(); 
    g.wait_for_all();

Results
To evaluate our implementation, we used pretrained models from the Open Model Zoo repository: vehicle-

license-plate-detection-barrier-0106_fp16, vehicle-attributes-recognition-barrier-0039_fp16, and license-

plate-recognition-barrier-0001. We ran our application on an Intel® Core™ i7-6770HQ processor with 

integrated Iris Pro Graphics 580. The elapsed time for running all inferences on 32,030 frames from a video 

was measured. The performance gain of the oneTBB flow graph over a corresponding manually threaded 

implementation is shown in Figure 2. Performance gains of up to 11% were obtained. We evaluated five 

different configurations that assigned models differently to the CPU and integrated GPU.
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Where to Get oneTBB Flow Graph
The Intel Distribution of OpenVINO toolkit already ships with oneTBB included, so using the flow graph is 

not an additional dependency as it is already there in OpenVINO. One simply needs to update the build 

infrastructure (CMakeLists.txt) to enable its use:
include_directories(/path/to/openvino/inference_engine/external/tbb/include) 
link_libraries(-L/path/to/openvino/inference_engine/external/tbb/lib -ltbb)

Final Thoughts
We have shown how to use a oneTBB flow graph to express dependencies across models used for 

inferencing. The flow graph makes it easy to express such dependencies, as well as express parallelism 

across the models directly in C++. For developers who don’t want to use larger frameworks like Gstreamer 

or DL Streamer, we believe that using a oneTBB flow graph is a good option to consider. Our implementation 

of the OpenVINO security barrier demo showed performance gains of up to 11% over a manually threaded 

implementation when using a oneTBB flow graph. The fact that the flow graph is a C++ framework, is 

shipped with Intel Distribution of OpenVINO toolkit, and has support for threading makes it a natural choice 

to build graphs of ML models for inferencing in OpenVINO.

Figure 2. Performance results of the flow graph security barrier demo. D-CPU, VC-CPU, 
LPR-CPU: All three models run on the CPU. D-GPU, VC-GPU, LPR-GPU: All three models run 
on the GPU. D-GPU, VC-GPU, LPR-CPU: Detection and classification run on the GPU, while 
recognition runs on the CPU. D-GPU, VC-CPU, LPR-GPU: Detection and recognition run on 

the GPU, while classification runs on the CPU. D-CPU, VC-GPU, LPR-GPU: Classification and 
recognition run on the GPU, while detection runs on the CPU.
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Introduction 
Modern Intel® processors offer instruction-, data-, and thread-level parallelism. The ability to simultaneously 

execute a single instruction on multiple data (SIMD) operands maximizes utilization of processor arithmetic 

execution units. In this article, we will focus on SIMD optimizations applied to vector scan operations.

Scan (also known as inclusive/exclusive scan, prefix sum, or cumulative sum) is a common operation in many 

application domains1. As such, it is defined as a standard library function in C++, the OpenMP runtime, and 

Vamsi Sripathi and Ruchira Sasanka, Senior HPC Application Engineers, Intel Corporation

Optimization of Scan 
Operations Using Explicit 
Vectorization
Exploiting Intel® AVX-512 SIMD Instructions to 
Accelerate Prefix Sum Computations
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the Python* NumPy package2,3. A scan of a vector is another vector where the result at index i is obtained by 

summing all the values up to index i (for inclusive scan) and i-1 (for exclusive scan) from the source vector. For 

instance, the inclusive scan of vector x with n elements is obtained by:

And generally defined as:

We will be demonstrating inclusive scan, henceforth referred to simply as scan. We’ll begin with a brief 

overview of SIMD, also known as vectorization, followed by a baseline implementation of the scan operation 

in C and with OpenMP directives. Next, we’ll implement an optimized scan algorithm in SIMD operating 

on 512-bit vector registers. We’ll conclude with performance comparisons of the baseline and optimized 

implementations.

SIMD Overview 
SIMD instructions operate on wider vector registers that can hold multiple data operands. The width and 

the number of vector registers are architecture-dependent, with the latest generation of Intel processors 

supporting 32, 512-bit-wide vector registers. Intel provides x86 ISA extensions in the form of Advanced 

Vector Extensions (AVX), AVX2, and AVX-512 that allow various arithmetic and logical operations to be 

performed on the 256-bit- and 512-bit-wide registers, respectively. Depending on the width of vector 

register, they are named XMM, YMM, or ZMM (Table 1).

Table 1. SIMD register naming
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SIMD execution is mainly facilitated through two methods:
1.	Implicit vectorization: This relies on the compiler to automatically transform the scalar computational 

loops into vectorized/SIMD blocks. The compiler does the heavy lifting of identifying which 
computations to vectorize, how aggressively to unroll loops, etc. based on a cost model. It also handles 
the data alignment requirements of SIMD instructions by producing the necessary loop prologue and 
epilogue sections in the generated object code. All the programmer has to do is use the appropriate 
compiler optimization flags for the target CPU architecture. Intel® compilers also provide pragmas4 to 
give explicit hints to control the generation of SIMD instructions.

2.	Explicit vectorization:

a.	 Vector intrinsics: These are C APIs provided by the compiler that map to the underlying hardware 
SIMD instructions5. They allow the programming to control the type of SIMD instructions (AVX, AVX2, 
and AVX-512) that are generated in the code and how aggressively they are used. This can be viewed 
as a hybrid mode wherein the programmer still relies on the compiler for critical aspects of tuning, 
such as register renaming and instruction scheduling, but at the same time has the ability to control 
the code generation of non-trivial, data-dependent operations, such as scan.

b.	Assembly language: This completely bypasses compiler optimization in favor of assembly language 
coding, which requires expert knowledge of underlying microarchitecture. This approach is not 
recommended.

The tradeoffs of these approaches are summarized in Table 2.

Baseline Code 
The baseline code for computing the scan of a vector is shown below, followed by the Intel compiler 

optimization report (generated using the -qopt-report=5 compiler option). The scan operation has inherent 

loop-carried dependencies, so the compiler is unable to fully vectorize the computation.

Table 2. Comparison of SIMD programming approaches
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The same operation with the addition of OpenMP directives is shown below, along with the compiler 

optimization report. OpenMP is a portable, directive-based parallel programming model that includes 

SIMD support. The SIMD construct (combined with the reduction clause and scan directive) can be used to 

perform a scan operation on the vector. (We refer the reader to the OpenMP specification, which provides 

good documentation6,7.) Because we are interested in understanding the impact of SIMD on workload 

performance, we are not parallelizing the loop, but instead limiting the OpenMP directives to vectorization 

only. The compiler optimization report shows that vectorization was performed using a vector length of eight 

(i.e., AVX-512) and that the loop was unrolled by a factor of 16 elements.

We will compare the baseline and auto-vectorized variants to the explicit AVX-512 SIMD implementation 

described in the next section.

Explicit Vectorization 
In this section, we demonstrate the SIMD techniques to optimize the vector scan operations on Intel 

processors that support AVX-512 execution units. We will be using the double precision floating point (FP64) 

datatype for input and output vectors. The AVX-512 SIMD instructions used in our implementation are 

shown in Table 3.

The main idea behind our implementation is to simultaneously perform a series of add operations in the 

lower and upper 256-bit lanes of the 512-bit register after applying the necessary shuffle sequence. For 

every eight input elements, we perform a total of five adds and five permutes. All the add operations form 

a dependency chain because we are accumulating the results in a single register. However, some of the 
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Figure 1. Explicit AVX-512 SIMD scan operation sequence

permutes are independent of the add, so they can be executed simultaneously. Figure 1 shows a visual 

representation of the implementation, followed by the code showing the main loop block where we are 

processing 16 elements per iteration.

Table 3. AVX-512 SIMD instructions
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Performance Evaluation 
We evaluate the performance between the three versions of scan implementations on a single core 

of an Intel® Xeon® Platinum 8260L processor. The GCC (v9.3.0), Clang (v10.0.1), and ICC (Intel® C++ 

Compiler, v19.1.3.304) compilers were compared for the baseline, OpenMP SIMD, and explicit AVX-512 

SIMD implementations. Table 4 shows the assembly code generated by ICC for the main block of each 

implementation.

We observe that for the baseline code, the loop is unrolled by only two elements, and both scalar add 

operations form a dependency chain. This is inefficient because the generated code is not exploiting the 

wider AVX-512 execution units.

The OpenMP SIMD implementation is more interesting because the generated code uses AVX-512 add and 

permute operations and is unrolled by 16 elements. There are total of eight adds, eight permute, and two 

broadcast instructions to process 16 input elements. For a set of eight elements, the add and permutes form 

a dependency chain (highlighted in red). In addition, all the permutes generated in this version of the code 

shuffle elements within 256b lanes. Permutes that shuffle elements within a 128b lanes have lower latency 

(one cycle) than permutes that shuffle within 256b lanes (three cycles).

Table 4. Assembly code generated by ICC for the three scan implementations
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Our explicit AVX-512 SIMD implementation is also unrolled by 16 elements, and uses 11 add and 10 

permute instructions to process those 16 elements. Even though we use greater number of add and 

permute instructions compared to the OpenMP SIMD scan, it has two advantages. First, four out of ten 

permutes are within a 128b lane (one-cycle latency), and hence are more efficient. These four permute 

instructions are highlighted in green. Second, some of the permutes are independent of the add instructions. 

This helps by providing more instruction-level parallelism and more effective utilization of AVX-512 

execution units. We do an extra add to compute the accumulation result as soon as possible. This puts more 

concurrent instructions in flight and mitigates stalls in the execution pipeline for future iterations.

Figure 2 shows the performance for vector sizes ranging from 64 to 1,024 elements in steps of 32 and with 

all vectors residing in L1 cache. We can make the following observations from the performance data:
1.	The explicit AVX-512 SIMD implementation outperforms both the baseline and OpenMP SIMD 

implementations.

2.	GCC and Clang are unable to vectorize the scan computations. Their performance remains unchanged, 
even with the OpenMP SIMD directives.

3.	ICC does a great job of auto-vectorization when OpenMP SIMD directives are used.

4.	The average speed-up of the explicit SIMD scan implementation over the baseline and OpenMP SIMD 
scans is 4.6x (GCC and Clang) and 1.6x (ICC), respectively.

Figure 2. Performance comparison of explicit AVX-512 scan
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Final Thoughts 
We have briefly introduced explicit SIMD programming and applied it to vector scan computations. While 

optimizing compilers can often provide good performance, there may be cases, as demonstrated in this 

article, where there is room for improvement. Therefore, it is useful for developers to understand explicit 

SIMD programming to achieve maximum performance.
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